Machine – Wikipedia

This article is about devices designed to perform tasks. For other uses, see Machine (disambiguation).

A machine is any physical system with ordered structural and functional properties. It may represent human-made or naturally occurring device molecular machine that uses power to apply forces and control movement to perform an action. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of hasil forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

Renaissance natural philosophers identified six simple machines which were the elementary devices that put a load into motion, and calculated the ratio of output force to input force, known today as mechanical advantage.[1]

Modern machines are complex systems that consist of structural elements, mechanisms and control components and include interfaces for convenient use. Examples include: a wide range of vehicles, such as automobiles, boats and airplanes; appliances in the home and office, including computers, building air handling and water handling systems; as well as farm machinery, machine tools and factory automation systems and robots.

James Albert Bonsack’s cigarette rolling machine, invented in 1880 and patented in 1881Etymology[edit]

The English word machine comes through Middle French from Latin machina,[dua] which in turn derives from the Greek (Doric μαχανά makhana, Ionic μηχανή mekhane ‘contrivance, machine, engine’,[3] a derivation from μῆχος mekhos ‘means, expedient, remedy'[4]).[5] The word mechanical (Greek: μηχανικός) comes from the same Greek roots. A wider meaning of ‘fabric, structure’ is found in classical Latin, but not in Greek usage. This meaning is found in late medieval French, and is adopted from the French into English in the mid-16th century.

In the 17th century, the word machine could also mean a scheme or plot, a meaning now expressed by the derived machination. The terkini meaning develops out of specialized application of the term to stage engines used in theater and to military siege engines, both in the late 16th and early 17th centuries. The OED traces the formal, terbaru meaning to John Harris’ Lexicon Technicum (1704), which has:Machine, or Engine, in Mechanicks, is whatsoever hath Force sufficient either to raise or stop the Motion of a Body. Simple Machines are commonly reckoned to be Six in Number, viz. the Ballance, Leaver, Pulley, Wheel, Wedge, and Screw. Compound Machines, or Engines, are innumerable.

The word engine used as a (near-) synonym both by Harris and in later language derives ultimately (via Old French) from Latin ingenium ‘ingenuity, an invention’.History[edit]

The hand axe, made by chipping flint to form a wedge, in the hands of a human transforms force and movement of the tool into a transverse splitting forces and movement of the workpiece. The hand axe is the first example of a wedge, the oldest of the six classic simple machines, from which most machines are based. The second oldest simple machine was the inclined plane (ramp),[6] which has been used since prehistoric times to move heavy objects.[7][8]

The other four simple machines were invented in the ancient Near East.[9] The wheel, along with the wheel and axle mechanism, was invented in Mesopotamia (terkini Iraq) during the 5th millennium BC.[10] The lever mechanism first appeared around 5,000 years ago in the Near East, where it was used in a simple balance scale,[11] and to move large objects in ancient Egyptian technology.[12] The lever was also used in the shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia circa 3000 BC,[11] and then in ancient Egyptian technology circa 2000 BC.[13] The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC,[14] and ancient Egypt during the Twelfth Dynasty (1991-1802 BC).[15] The screw, the last of the simple machines to be invented,[16] first appeared in Mesopotamia during the Neo-Assyrian period (911-609) BC.[17] The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the Great Pyramid of Giza.[18]

Three of the simple machines were studied and described by Greek philosopher Archimedes around the 3rd century BC: the lever, pulley and screw.[19][20]Archimedes discovered the principle of mechanical advantage in the lever.[21]Later Greek philosophers defined the classic five simple machines (excluding the inclined plane) and were able to roughly calculate their mechanical advantage.[1]Heron of Alexandria (ca. 10–75 AD) in his work Mechanics lists five mechanisms that can “set a load in motion”; lever, windlass, pulley, wedge, and screw,[20] and describes their fabrication and uses.[22]However, the Greeks’ understanding was limited to statics (the balance of forces) and did not include dynamics (the tradeoff between force and distance) or the concept of work.

An ore crushing machine powered by a water wheel

The earliest practical water-powered machines, the water wheel and watermill, first appeared in the Persian Empire, in what are now Iraq and Iran, by the early 4th century BC.[23] The earliest practical wind-powered machines, the windmill and wind pump, first appeared in the Muslim world during the Islamic Golden Age, in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD.[24][25][26][27] The earliest practical steam-powered machine was a steam jack driven by a steam turbine, described in 1551 by Taqi al-Din Muhammad ibn Ma’ruf in Ottoman Egypt.[28][29]

The cotton gin was invented in India by the 6th century AD,[30] and the spinning wheel was invented in the Islamic world by the early 11th century,[31] both of which were mendasar to the growth of the cotton industry. The spinning wheel was also a precursor to the spinning jenny, which was a key development during the early Industrial Revolution in the 18th century.[32] The crankshaft and camshaft were invented by Al-Jazari in Northern Mesopotamia circa 1206,[33][34][35] and they later became central to modern machinery such as the steam engine, internal combustion engine and automatic controls.[36]

The earliest programmable machines were developed in the Muslim world. A music sequencer, a programmable musical instrument, was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices, in the 9th century.[37][38] In 1206, Al-Jazari invented programmable automata/robots. He described four automaton musicians, including drummers operated by a programmable drum machine, where they could be made to play different rhythms and different drum patterns.[39]

During the Renaissance, the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how much useful work they could perform, leading eventually to the new concept of mechanical work. In 1586 Flemish engineer Simon Stevin derived the mechanical advantage of the inclined plane, and it was included with the other simple machines. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche (“On Mechanics”).[40][41] He was the first to understand that simple machines do not create energy, they merely transform it.[40]

The classic rules of sliding friction in machines were discovered by Leonardo da Vinci (1452–1519), but remained unpublished in his notebooks. They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Augustin de Coulomb (1785).[42]

James Watt patented his parallel motion linkage in 1782, which made the double acting steam engine practical.[43] The Boulton and Watt steam engine and later designs powered steam locomotives, steam ships, and factories.

The Industrial Revolution was a period from 1750 to 1850 where changes in agriculture, manufacturing, mining, transportation, and technology had a profound effect on the social, economic and cultural conditions of the times. It began in the United Kingdom, then subsequently spread throughout Western Europe, North America, Japan, and eventually the rest of the world.